本文作者:admin

六年级上册数学复习资料

admin 2020-11-28 90
六年级上册数学复习资料摘要: 数学六年级有哪些复习内容?六年级数学复习《新课程标准》指出:解决问题的教学不再以例教题,分类教学的方式,而是与各领域的学习内容紧密结合,为学生创设独立思考,动手实践的时空,变‘教解...

数学六年级有哪些复习内容?


六年级数学复习

《新课程标准》指出:解决问题的教学不再以例教题,分类教学的方式,而是与各领域的学习内容紧密结合,为学生创设独立思考,动手实践的时空,变‘教解法’为‘策略指导’。关注学生解决问题的方法以及思考的过程,引导学生解决问题的过程中积淀解决问题的思路和方法的形成,解决问题的策略基于这样的教学方式,教师又应如何指导学生进行解决问题的整理与复习呢?笔者结合自身实践,谈谈自己的肤浅认识。

一、 在比较中灵活运用

在进行毕业复习时,如何提高学生解决问题的能力,教师应设计和安排每一次的训练内容,在选择题目的过程中,除了考虑应用题的内容和加强训练的针对性、目的性之外,还应注意训练形式的多样化。

在复习过程中,加强解法之间的比较,可以促进学生提高思维的灵活性,从而选择合理而乘法的解题方案。我们来看这样的例子:

例1:①学校有足球20个,篮球比足球多1/4。篮球有多少个?

②学校有足球20个,足球比篮球多1/4。篮球有多少个?

例2:①甲乙两地相距120千米,客车从甲地到乙地要行4小时,货车从乙地到甲地要行8小时,两车同时从两地相向而行,几小时相遇?

②甲乙两地相距若干千米,客车从甲地到乙地要行4小时,货车从乙地到甲地要行8小时,两车同时从两地相向而行,几小时相遇?

通过例1中两小题的练习,不仅使学生正确地判断单位“1”,和正确认识对应关系,而且提高了学生的审题能力。通过例2中两小题的练习,由“相遇问题”导入“工程问题”,使学生进一步掌握在“工程问题”中把全部工程看作单位“1”这一解题规律。

二、 在转化中拓展思维

学生是否能对条件进行灵活而科学地转化,是解决问题策略多样性的重要因素之一。在复习中重视引导学生学会转化。为此,可以提供一些解题方案。让学生说一说自己是臬理解的;也可以在教师的指导下,让学生写出解题过程,逐步让学生自己独立思考,交流探索成果,通过这样的学习活动来拓展学生思维,最终使学生达到科学地、多途径地选择解题策略。

(1) 变换条件:

采用这种训练形式,主要是为了使学生较好地掌握有关概念和术语,弄清它们之间的区别与联系,在具体做法上,可以变换条件和问题,还可以将问题和条件同时改变。

例1:在植树活动中,铁路小学六年级学生植树240棵, ,五年级学生植树多少棵?

1、五年级是六年级的5/8

2、 五年级是六年级的62.5%

3、 五年级比六年级少3/8

4、 六年级比五年级多60%

5、六年级是五年级的8/5倍

(2)变换问题:

例2:一根钢管长20米,第一次剪去全长的1/5,第二次剪去全长的37.5%,根据已知条件,你可以提出哪些问题?

1、第一次剪去多少米?

2、 第二次剪去多少米?

3、 两次一共剪去多少米?

4、 第二次比第一次多剪去多少米?

5、 还剩多少米?

三、 在联系中阔视野

在教学中强调的是“发现”知识的过程,而不是简单获得结果。因此,我在教学过程中,精心设题,以启动思维,充分调动学生的学习激情,课堂教学的真功夫,在于引导学生积极思维,不仅要关注知识间的联系,更应关注解决问题策略的联系,重视引导学生用不同方法解决同一问题,并随时地交流学习成果,以此来开阔学生的思维视野,激发学生的学习兴趣。比如在六年级总复习时,我安排这样一道题:

东风机床厂原计划30天生产1800个零件,实际每天比原计划多生产25%,实际生产多少天完成任务?

出示题目后,我首先是组织学生讨论,并鼓励他们从不同的角度,不同的途径进行思考,结果学生做出了三种不同的解法:

1、用分数方法解:1800÷[1800÷30×(1+25%)=24(元)

2、用工程问题解:①把工作量看作单位“1”,则1÷[1/30×(1+25%)]=24(元)

②把原来的工作效率看作单位“1”,则1×30÷(1+25%)=24(元)

3、用比例方法解:设实际要X天完成,把原计划的工作效率看作单位“1”,则1×(1+25%)X=1×30 解之得X=24,然后指导学生在比较中选择简捷算法,探索最佳方案,让学生展开思维的翅膀,培养学生思维的浏畅性,变通性和独特性,使学生能够灵活运用所学的知识,并能在解法上敢于创新。

总之,在复习过程中,一是要做到让学生熟练而灵活地运用所学知识,解决实际问题;二是要促进学生解决问题能力的发展,培养学生探索与创新精神;三是在解法的交流活动中促进思维的互补启迪,在积极的评价氛围中激发学生的学习欲望,达到开阔视野,拓展思维的目的,让学生形成良好的数学素养。

小学六年级数学知识点


小学数学复习考试知识点汇总

一、小学生数学法则知识归类

(一)笔算两位数加法,要记三条

1、相同数位对齐;

2、从个位加起;

3、个位满10向十位进1。

(二)笔算两位数减法,要记三条

1、相同数位对齐;

2、从个位减起;

3、个位不够减从十位退1,在个位加10再减。

(三)混合运算计算法则

1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

3、算式里有括号的要先算括号里面的。

(四)四位数的读法

1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;

2、中间有一个0或两个0只读一个“零”;

3、末位不管有几个0都不读。

(五)四位数写法

1、从高位起,按照顺序写;

2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。

(六)四位数减法也要注意三条

1、相同数位对齐;

2、从个位减起;

3、哪一位数不够减,从前位退1,在本位加10再减。

(七)一位数乘多位数乘法法则

1、从个位起,用一位数依次乘多位数中的每一位数;

2、哪一位上乘得的积满几十就向前进几。

(八)除数是一位数的除法法则

1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;

2、除数除到哪一位,就把商写在那一位上面;

3、每求出一位商,余下的数必须比除数小。

(九)一个因数是两位数的乘法法则

1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;

2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

3、然后把两次乘得的数加起来。

(十)除数是两位数的除法法则

1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,

2、除到被除数的哪一位就在哪一位上面写商;

3、每求出一位商,余下的数必须比除数小。

(十一)万级数的读法法则

1、先读万级,再读个级;

2、万级的数要按个级的读法来读,再在后面加上一个“万”字;

3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

(十二)多位数的读法法则

1、从高位起,一级一级往下读;

2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;

3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

(十三)小数大小的比较

比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。

(十四)小数加减法计算法则

计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。

(十五)小数乘法的计算法则

计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

(十六)除数是整数除法的法则

除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

(十七)除数是小数的除法运算法则

除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

(十八)解答应用题步

>>>>精品(暖文爽文)在线阅读<<<<

1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

2、确定每一步该怎样算,列出算式,算出得数;

3、进行检验,写出答案。

(十九)列方程解应用题的一般步骤

1、弄清题意,找出未知数,并用X表示;

2、找出应用题中数量之间的相等关系,列方程;

3、解方程;

4、检验、写出答案。

(二十)同分母分数加减的法则

同分母分数相加减,分母不变,只把分子相加减。

(二十一)同分母带分数加减的法则

带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

(二十二)异分母分数加减的法则

异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。

(二十三)分数乘以整数的计算法则

分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

(二十四)分数乘以分数的计算法则

分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。

(二十五)一个数除以分数的计算法则

一个数除以分数,等于这个数乘以除数的倒数。

(二十六)把小数化成百分数和把百分数化成小数的方法

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;

把百分数化成小数,把百分号去掉,同时小数点向左移动两位。

(二十七)把分数化成百分数和把百分数化成分数的方法

把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;

把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。

二、小学数学口决定义归类

1、什么是图形的周长?

围成一个图形所有边长的总和就是这个图形的周长。

2、什么是面积?

物体的表面或围成的平面图形的大小叫做他们的面积。

3、加法各部分的关系:

一个加数=和-另一个加数

4、减法各部分的关系:

减数=被减数-差 被减数=减数+差

5、乘法各部分之间的关系:

一个因数=积÷另一个因数

6、除法各部分之间的关系:

除数=被除数÷商 被除数=商×除数

7、角

(1)什么是角?

从一点引出两条射线所组成的图形叫做角。

(2)什么是角的顶点?

围成角的端点叫顶点。

(3)什么是角的边?

围成角的射线叫角的边。

(4)什么是直角?

度数为90°的角是直角。

(5)什么是平角?

角的两条边成一条直线,这样的角叫平角。

(6)什么是锐角?

小于90°的角是锐角。

(7)什么是钝角?

大于90°而小于180°的角是钝角。

(8)什么是周角?

一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.

8、(1)什么是互相垂直?什么是垂线?什么是垂足?

两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

(2)什么是点到直线的距离?

从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。

9、三角形

(1)什么是三角形?

有三条线段围成的图形叫三角形。

(2)什么是三角形的边?

围成三角形的每条线段叫三角形的边。

(3)什么是三角形的顶点?

每两条线段的交点叫三角形的顶点。

(4)什么是锐角三角形?

三个角都是锐角的三角形叫锐角三角形。

(5)什么是直角三角形?

有一个角是直角的三角形叫直角三角形。

(6)什么是钝角三角形?

有一个角是钝角的三角形叫钝角三角形。

(7)什么是等腰三角形?

两条边相等的三角形叫等腰三角形。

(8)什么是等腰三角形的腰?

有等腰三角形里,相等的两个边叫做等腰三角形的腰。

(9)什么是等腰三角形的顶点?

两腰的交点叫做等腰三角形的顶点。

(10)什么是等腰三角形的底?

在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。

(11)什么是等腰三角形的底角?

底边上两个相等的角叫等腰三角形的底角。

(12)什么是等边三角形?

三条边都相等的三角形叫等边三角形,也叫正三角形。

(13)什么是三角形的高?什么叫三角形的底?

从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。

(14)三角形的内角和是多少度?

三角形内角和是180°.

10、四边形

(1)什么是四边形?

有四条线段围成的图形叫四边形。

(2)什么是平等四边形?

两组对边分别平行的四边形叫做平行四边形。

(3)什么是平行四边形的高?

从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。

(4)什么是梯形?

只有一组对边平行的四边形叫做梯形。

(5)什么是梯形的底?

在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。

(6)什么是梯形的腰?

在梯形里,不平等的一组对边叫梯形的腰。

(7)什么是梯形的高?

从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。

(8)什么是等腰梯形?

两腰相等的梯形叫做等腰梯形。

11、什么是自然数?

用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。

12、什么是四舍五入法?

求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。

13、加法意义和运算定律

(1)什么是加法?

把两个数合并成一个数的运算叫加法。

(2)什么是加数?

相加的两个数叫加数。

(3)什么是和?

加数相加的结果叫和。

(4)什么是加法交换律?

两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。

14、什么是减法?

已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。

15、什么是被减数?什么是减数?什么叫差?

在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。

16、加法各部分间的关系:

和=加数+加数 加数=和-另一加数

17、减法各部分间的关系:

差=被减数-减数 减数=被减数-差 被减数=减数+差

18、乘法

(1)什么是乘法?

求几个相同加数的和的简便运算叫乘法。

(2)什么是因数?

相乘的两个数叫因数。

(3)什么是积?

因数相乘所得的数叫积。

(4)什么是乘法交换律?

两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。

(5)什么是乘法结合律?

三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。

19、除法

(1)什么是除法?

已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。

(2)什么是被除数?

在除法中,已知的积叫被除数。

(3)什么是除数?

在除法中,已知的一个因数叫除数。

(4)什么是商?

在除法中,求出的未知因数叫商。

20、乘法各部分的关系:

积=因数×因数 一个因数=积÷另一个因数

21、(1)除法各部分间的关系:

商=被除数÷除数 除数=被除数÷商

(2)有余数的除法各部分间的关系:

被除数=商×除数+余数

22、什么是名数?

通常量得的数和单位名称合起来的数叫名数。

23、什么是单名数?

只带有一个单位名称的数叫单名数。

24、什么是复名数?

有两个或两个以上单位名称的数叫复名数。

25、什么是小数?

仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。

26、什么是小数的基本性质?

小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。

27、什么是有限小数?

小数部分的位数是有限的小数叫有限小数。

28、什么是无限小数?

小数部分的位数是无限的小数叫无限小数。

29、什么是循环节?

一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。

30、什么是纯循环小数?

循环节从小数第一位开始的叫纯循环小数。

31、什么是混循环小数?

循环节不是从小数部分第一位开始的叫做混循环小数。

32、什么是四则运算?

我们把学过的加、减、乘、除四种运算统称四则运算。

33、什么是方程?

含有未知数的等式叫方程。

34、什么是解方程?

求方程解的过程叫解方程。

35、什么是倍数?什么叫约数?

如果a能被b整除,a就是b的倍数,b就叫a的约数(或a的因数)。

36、什么样的数能被2整除?

个位上是0、2、4、6、8的数都能被2整除。

37、什么是偶数?

能被2整除的数叫偶数。

38、什么是奇数?

不能被2整除的数叫奇数。

39、什么样的数能被5整除?

个位上是0或5的数能被5整除。

40、什么样的数能被3整除?

一个数的各位上的和能被3整除,这个数就能被3整除。

41、什么是质数(或素数)?

一个数如果只有1和它本身两个约数,这样的数叫质数。

42、什么是合数?

一个数除了1和它本身还有别的约数,这样的数叫合数。

43、什么是质因数?

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。

44、什么是分解质因数?

把一个合数用质因数相乘的形式表示出来叫做分解质因数。

45、什么是公约数?什么叫最大公约数?

几个数公有的约数叫公约数。其中最大的一个叫最大公约数。

46、什么是互质数?

公约数只有1的两个数叫互质数。

47、什么是公倍数?什么是最小公倍数?

几个数公有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。

48、分数

(1)什么是分数?

把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。

(2)什么是分数线?

在分数里中间的横线叫分数线。

(3)什么是分母?

分数线下面的部分叫分母。

(4)什么是分子?

分数线上面的部分叫分子。

(5)什么是分数单位?

把单位“1”平均分成若干份,表示其中的一份叫分数单位。

49、怎么比较分数大小?

(1)分母相同的两个分数,分子大的分数比较大。

(2)分子相同的两个分数,分母小的分子比较大。

(3)什么是真分数?

分子比分母小的分数叫真分数。

(4)什么是假分数?

分子比分母大或者分子和分母相等的分数叫假分数。

(5)什么是带分数?

由整分数和真分数合成的数通常叫带分数。

(6)什么是分数的基本性质?

分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。

(7)什么是约分?

把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。

(8)什么是最简分数?

分子、分母是互质数的分数叫最简分数。

50、比

(1)什么是比?

两个数相除又叫两个数的比。

(2)什么是比的前项?

比号前面的数叫比的前项。

(3)什么是比的后项?

比号后面的数叫比的后项。

(4)什么是比值?

比的前项除以后项所得的商叫比值。

(5)什么是比的基本性质?

比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。

51、长方体和正方体

(1)什么是棱?

两个面相交的边叫棱。

(2)什么是顶点?

三条棱相交的点叫顶点。

(3)什么是长方体的长、宽、高?

相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。

(4)什么是正方体(立方体)?

长宽高都相等的长方体叫正方体(或立方体)。

(5)什么是长方体的表面积?

长方体六个面的总面积叫长方体的表面积。

(6)什么是物体体积?

物体所占空间的大小叫做物体的体积。

52、圆

(1)什么是圆心?

圆中心的点叫圆心。

(2)什么是半径?

连接圆心和圆上任意一点的线段叫半径。

(3)什么是直径?

通过圆心、并且两端都在圆上的线段叫直径。

(4)什么是圆的周长?

围成圆的曲线叫圆的周长。

(5)什么是圆周率?

我们把圆的周长和直径的比值叫圆周率。

(6)什么是圆的面积?

圆所围平面的大小叫圆的面积。

(7)什么是扇形?

一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。

(8)什么是弧?

在圆上两点之间的部分叫弧。

(9)什么是圆心角?

顶点在圆心上的角叫圆心角。

(10)什么是对称图形?

如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。

53、什么六年级上册数学复习资料是百分数?

表示一个数是另一个数百分之几的数叫百分数,百分数也叫百分率或百分比。

54、比例

(1)什么是比例?

表示两个比相等的式子叫比例。

(2)什么是比例的项?

组成比例的四个数叫比例的项。

(3)什么是比例外项?

两端的两项叫比例外项。

(4)什么是比例内项?

中间的两项叫比例内项。

(5)什么是比例的基本性质?

在比例中两个外项的积等于两个内项的积。

(6)什么是解比例?

求比例中的未知项叫解比例。

(7)什么是正比例关系?

两种相关的量,一种变化,另一种量也变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫正比例的量,它们的关系叫正比例关系。

(8)什么是反比例关系?

两种相关的量,一种变化,另一种也随着变化,如果这两种量中相对应的积一定,这两种量叫反比例的量,它们的关系成反比例关系。

55、圆柱

(1)什么是圆柱底面?

圆柱的上下两个面叫圆柱的底面。

(2)什么是圆柱的侧面?

圆柱的曲面叫圆柱的侧面。

(3)什么是圆柱的高?

圆柱两个底面的距离叫圆柱的高。

三、小学数学量的计算单位及进率归类

1、长度计量单位及进率:千米(公里)、米、分米、厘米、毫米

1千米=1公里 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

2、面积计量单位及进率:平方千米、公顷、平方米、平方分米、平方厘米

1平方千米=100公顷 1平方千米=1000000平方米

1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米

3、体积容积计量单位及进率:立方米、立方分米、立方厘米、升、毫升

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方分米=1升 1立方厘米=1毫升

4、质量单位及进率:吨、千克、公斤、克

1吨=1000千克 1千克=1公斤 1千克=1000克

5、时间单位及进率:世纪、年、月、日、小时、分、秒

1世纪=100年 1年=12月 1天=24小时 1小时=60分 1分=60秒

(31天的月份有1、3、5、7、8、10、12月份,

30天的月份有4、6、9、11月份,

平年2月28天,闰年2月29天)

四、常用计算公式表

1、长方形面积=长×宽,计算公式S=ab

2、正方形面积=边长×边长,计算公式S=a×a=a2

3、长方形周长=(长+宽)×2,计算公式C=(a+b)×2

4、正方形周长=边长×4,计算公式C=4a

5、平行四边形面积=底×高,计算公式S=ah

6、三角形面积=底×高÷2,计算公式S=a×h÷2

7、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)×h÷2

8、长方体体积=长×宽×高,计算公式V=abh

9、圆的面积=圆周率×半径平方,计算公式V=πr2

10、正方体体积=棱长×棱长×棱长,计算公式V=a3

11、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh

12、圆柱的体积=底面积×高,计算公式V=sh

1、数据的收集和整理

2、表的意义:把收集到的数据整理以后制成表格,用来反映情况,分析具体问题,这样的表格叫做统计表。

3、常见统计表的分类:

(1)、单式统计表:只含有一个统计项目的统计表。

(2)、复式统计表:含有2个或2个以上统计项目的统计表。

(3)、百分数统计表:不仅表明各统计项目的具体数量,而且表明数量间的百分比的统计表。

4、统计表的制作步骤和方法。

(1)收集数据、整理数据。

(2)根据资料和制作表要求确定统计表的格式和项目。

(3)根据整理好的数据填表。

(4)填写好总计和合计。

(5)写出制表的名称和制表的时间,必要时注明制表人。

5、条形统计图的意义:用一个单位长度表示一定的数量,根据数量画出长短不一的直条,然后把直条按照一定的顺序排列起来。

6、折线统计图的意义:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连起来。

7、扇形统计图:用一个圆表示总量,用圆中大小不同的扇形表示各部分数量所占的百分比。

8、统计量:包括平均数、众数、中位数。

9、统计平均数的意义:平均数能较好地反映一组数据的整体水平。

10、众数:在一组数据中,出现次数最多的那个数据叫众数。

11、中位数:把收集到的某一对象的有关数据,按大小顺序排列,处于中间位置的那个数据(或中间两个数据的平均数)叫中位数。

12、确定现象与不确定现象的认识a、不确定现象:生活中,有些事的发生是不确定的,一般用“可能发生”来描述。

13、确定现象:生活中,有些事情的发生是确定的。一般用“一定发生”或“不可能发生”来描述。

14、可能性大小的表示:用数字表示“一定能”“不可能”。 “一定能”这种可能性用1来表示,“不可能”用0来表示。

1.圆锥的特征:由2个面围成,一个是底面,一个是曲面(展开后是一个扇形) 只有一条高。

2.圆柱的体积:

公式的推导:利用转化的策略。

把圆柱的底面平均分成16、32、64……无限分割,切开后拼成的物体越来越接近长方体。根据长方体的体积公式推导出圆柱的体积公式。

V=sh(底面积×高)

当然在计算圆柱体积的过程中,还有一些变式。如已知半径、直径、底面周长等。

例如:

已知底面半径是10厘米,高是12厘米,求圆柱的体积。

已知底面直径是4分米,高是8分米,求圆柱的体积。

已知圆柱的底面周长是12.56分米,高5分米,求圆柱的体积。

3.圆锥的体积:

通过操作观察讨论获得:圆锥的体积是与它等底等高的圆柱体积的1/3()圆柱的体积是与它等底等高圆锥体积的3倍。

V=1/3sh

4.关于圆锥的一些拓展提高,将会在下面的学习中遇到。

(1)等底、等高的圆柱体积与圆锥的体积比是3:1

一、知识点:1 正方形

C周长 S面积 a边长

周长=边长×4

C=4a

面积=边长×边长

S=a×a

2 正方体

V:体积 a:棱长

表面积=棱长×棱长×6

S表=a×a×6

体积=棱长×棱长×棱长

V=a×a×a

3 长方形

C周长 S面积 a边长

周长=(长+宽)×2

C=2(a+b)

面积=长×宽

S=ab

4 长方体

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

(2)体积=长×宽×高

V=abh

5 三角形

s面积 a底 h高

面积=底×高÷2

s=ah÷2

三角形高=面积 ×2÷底

三角形底=面积 ×2÷高

6 平行四边形

s面积 a底 h高

面积=底×高

s=ah

7 梯形

s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圆形

S面积 C周长 ∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径

C=∏d=2∏r

(2)面积=半径×半径×∏

9 圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10 圆锥体

v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

1 每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

2 1倍数×倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

3 速度×时间=路程

路程÷速度=时间

路程÷时间=速度

4 单价×数量=总价

总价÷单价=数量

总价÷数量=单价

5 工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6 加数+加数=和

和-一个加数=另一个加数

7 被减数-减数=差

被减数-差=减数

差+减数=被减数

8 因数×因数=积

积÷一个因数=另一个因数

9 被除数÷除数=商

被除数÷商=除数

商×除数=被除数

小学六年级毕业班各科复习资料


数学总复习

  第一章 数和数的运算

  第一节 数的认识

  知识要点

  1、数的意义

  (1)自然数:我们在数物体的时候,用来表示物体个数的0,1,2,3,……,都叫做自然数。1是自然数的记数单位。自然数既可以表示事物的多少(基数),也可以表示事物的次序(序数)。如“每星期7天”中的“7”表示的是基数,“5月3日”中的“5”和“3”表示的是序数。一个物体也没有就用0表示。0是最小的自然数。

  (2)整数和自然数:自然数都是整数,但只是整数的一部分(整数还包括负整数)。最小的一位数是1而不是0。

  0的作用:①在数字中起占位作用,表示该位上没有单位;②表示起点;③表示界线。如温度计、数轴上的0,表示正、负数的分界线。

  (3)分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数就是分数单位。

  分数与除法的关系:分数是一种数,除法是一种运算,它们是两个不同的概念,但它们也有密切的内在联系。如:

  (4)小数:把整数“1”平均分成10份,100份,1000份……这样的一份或几份是十分之几,百分之几,千分之几……可以用小数表示。

  小数的分类:

  (5)数位、位数和计数单位:各个计数单位所占的位置叫做数位。一个自然数含有数位的多少叫做位数。整数和小数都是按照十进制计数法写出的数,其中个、十、百……以及十分之一、百分之一……都是计数单位。

  (6)整数和小数数位顺序表:

  (7)百分数、成数和折扣:

  ①百分数:表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或百分比。

  ②成数:农业上常用的名词。几成就是十分之几。

  ③折扣:商业上常用的名词。几折就是十分之几。

  注意:百分数、成数和折扣只表示两个数的倍比关系,而分数除了表示倍比关系外,还可以是一个具体数量。

  2、数的读法和写法

  (1)整数的读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零。

  (2)整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

  (3)小数的读法和写法:整数部分按整数来读(写),小数点读作点,小数部分依次读(写)出每一位上的数。

  3、数的改写

  (1)多位数的改写和省略:为了读写方便,我们常把一个较大的多位数,写成用“万”或“亿”作单位的数,先找到万位或亿位,再在万位或亿位上数的右下角点上小数点,并在后面写上“万”或“亿”,要用“=”;有时也可以根据需要省略这个数某一位后面的尾数,写成近似数。省略一般用“四舍五入法”,结果用“≈”。

  (2)分数、小数与百分数的互化:

  (3)一个最简分数,如果分母中含有2和5以外的质因数,则这个分数不能化成有限小数。

  4、数的大小比较

  (1)整数的大小比较:先看位数,位数多的数大;位数相同,从最高位看起,相同数位上的数大的那个数就大。

  (2)小数的大小比较:先比较两个数的整数部分,整数部分大的那个数大;整数部分相同,再看它们的小数部分,从高位看起,依数位比较,相同数位上的数大的那个数就大。

  (3)分数大小比较:分母相同的分数,分子大的分数大;分子相同的分数,分母小的分数大。分母不同的分数,先通分再比较。

  第二节 数的整除和分数、小数的基本性质

  知识要点

  1、数的整除

  (1)整除的意义:在小学阶段讲“数的整除”时所说的数一般指非0自然数。

  数a除以数b,除得的商正好是整数而没有余数,我们就说,a能被b整除,或者说b能整除a。

  (2)约数和倍数:如果a能被b整除,a叫做b的倍数,b叫做a的约数。

  一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

  一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。

  (3)奇数和偶数:能被2整除的数叫做偶数,因为0也能被2整除,所以最小的偶数是0;不能被2整除的数叫做奇数,最小的奇数是1。

  (4)能被2,3,5整除的数的特征:

  ①能被2整除的数:个位是0,2,4,6,8。

  ②能被3整除的数:各位上的数的和能被3整除。

  ③能被5整除的数:个位上是0或5。

  (5)质数和合数:一个数如果只有1和它本身两个约数,叫做质数;一个数,如果除了1和它本身,还有别的约数,就叫做合数。1既不是质数,也不是合数。最小的质数是2,最小的合数是4。

  (6)分解质因数:每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。把一个合数用几个质因数相乘的形式表示出来,称为分解质因数。通常我们用短除法来分解质因数。

  (7)公约数和最大公约数:几个数公有的约数叫做这几个数的公约数。其中最大的一个叫做这几个数的最大公约数。

  (8)互质数:公约数只有1的两个数,叫做互质数。

  (9)公倍数和最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。

  (10)求最大公约数和最小公倍数的方法:一般采用短除法。如果两个数中大数是小数的倍数,小数是大数的约数,则大数是它们的最小公倍数,小数是它们的最大公约数。如果两个数是互质数,则它们的最大公约数是1,最小公倍数是两数相乘所得的积

  2、分数、小数的基本性质

  (1)分数的基本性质:分数的分子和分母同时乘上或者除以相同的数(零除外),分数的大小不变。

  (2)小数的基本性质:小数的末尾添上0或者去掉0,小数的大小不变。

  (3)小数点位置移动引起小数大小变化:小数点向右移动一位,两位,三位……原来的数就扩大10倍,100倍,1000倍……反之,小数点向左移动一位,两位,三位……原来的数就缩小10倍,100倍,1000倍……

  第三节 数的运算

  知识要点

  1、四则运算的意义和法则

  (1)四则运算的意义:

  数的

  分类

  运算名称 整 数 小 数 分 数

  加 法 把两个数合并成一个数的运算。 与整数加法的意义相同。 与整数加法的意义相同。

  减 法 已知两个数的和与其中的一个加数,求另一个加数的运算。 与整数减法的意义相同。 与整数减法的意义相同。

  乘 法 求几个相同加数的和的简便运算。 小数乘整数与整数乘法的意义相同。

  一个数乘小数,就是求这个数的十分之几、百分之几、千分之几……是多少。 分数乘整数与整数乘法的意义相同。

  一个数乘分数,就是求这个数的几分之几是多少。

  除 法 已知两个因数的积与其中一个因数,求另一个因数的运算。 与整数除法的意义相同。 与整数除法的意义相同。

  (2)四则运算的法则:

  ①加减法的法则:

  同单位相加减,单位不变,单位的个数相加减

  整 数 小 数 分 数

  1.相同数位对齐;

  2.从低位算起;

  3.加法中满几十就向前一位进几;减法中不够减时,就从前一位退,退几当几十。 1. 相同数位对齐(小数点对齐);

  2. 从低位算起;

  3.按整数加减法进行计算;

  4.结果中的小数点和相加减的数里的小数点对齐。 1.同分母分数相加减,分母不变,分子相加减。

  2.异分母分数相加减,先通分,然后计算。

  3.结果能约分的要约分,是假分数的化成带分数。

  ②乘法、除法的法则:

  乘

  法 整 数 小 数 分 数

  1.从个位乘起,依次用第二个因数每位上的数去乘第一个因数。

  2.用第二个因数哪一位上的数去乘,得数的末位就和第二个因数的哪一位对齐。

  3.再把几次乘得的数加起来。 1.按整数乘法法则先求出积。

  2.看因数中一共有几位小数,就从积的右边起数出几位点上小数点。 1.分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

  2.有整数的把整数看做分母是1的假分数。

  3.有带分数的,通常先把带分数化成假分数。

  除

  法 除法是整数的除法:从被除数的高位起,除数是几位数,就先看被除数的前几位,如果不够除,就要多看一位。除到哪一位就要把商写在哪一位的上面。商的小数点和被除数的小数点对齐。 除数是小数的除法:先移动除数的小数点,使它变成整数。除数的小数点向右移动几位,被除数的小数点也向右移动相同的位数(位数不够的补“0”),然后按照除数是整数的除法进行计算。 甲数除以乙数(0除外),等于甲数乘上乙数的倒数。

  (3)四则运算各部分的关系:

  2、运算定律和简便运算

  (1)运算定律:

  ①加法交换律 a+b=b+a

  ②加法结合律 (a+b)+c=a+(b+c)

  ③乘法交换律 a×b=b×a

  ④乘法结合率 a×b×c=a×(b×c)

  ⑤乘法分配律 a×(b+c)=a×b+a×c

  (2)运算性质:

  ①减法的运算性质 a-(b+c)=a-b-c a-(b-c)=a-b+c

  ②除法的运算性质 a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c

  (a+b)÷c=a÷c+b÷c (a-b)÷c=a÷b-b÷c

  3、四则运算的顺序

  四则运算分为二级。加减法叫做第一级运算,乘除法叫做第二级运算。运算顺序:在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。

  在一个有括号的算式里,要先算小括号里面的,再算小括号外面的。

  第二章 代数的初步知识

  第一节 简易方程

  知识要点

  1、用字母表示数

  (1)用字母可以表示我们学过的自然数、整数、小数、百分……

  (2)用含有字母的式子,可以简明地表达数学概念、运算定律和数学计算公式。还可以简明地表达数量关系。

  注意:(1)在含有字母的乘法里,乘号可以省略不写或用“?”表示。如:a×x写成ax或a?x。数和数相乘时,乘号不能省略。

  (2)数字和字母相乘时,可以化简成数字放在最前面。如:a×4×b写成4ab。

  (3)1与字母相乘时,1省略不写。如:a×1写成a。

  2、简易方程

  (1)等式:表示相等关系的式子叫等式。

  (2)方程:含有未知数的等式叫方程。

  (3)方程的解:使方程左右两边相等的未知数的值叫做方程的解。

  (4)解方程:求方程的解的过程叫做解方程。

  (5)简易方程的解法步骤:①对于只有一步运算的方程,可用加法与减法、乘法与除法的互逆关系求解。对于含有二、三步运算的方程,先根据方程确定运算顺序,再根据四则运算的互逆关系求出方程的解。

  ②把求出的未知数的值,分别代入原方程两边计算(即求含有字母的式子的值),如果原方程的等号两边相等,则所求得的未知数的值,是原方程的解。

  第二节 比和比例

  知识要点

  1、 和比例

  比 比例

  意义 两个数相除又叫做两个数的比。 表示两个比相等的式子叫做比例。

  基本性质 比的前项和后项同时乘上或者同时除以相同的数(零除外),比值不变。 在比例里,两个内项的积等于两个外项的积。

  2、 比、分数与除法的关系

  比 “:”(比号) 前项 后项 比值

  分数 “—”(分数线) 分子 分母 分数值

  除法 “÷”(除号) 被除数 除数 商

  3、 求比值和化简比的区别与联系

  一般方法 结果

  求比值 根据比值的意义,用前项除以后项。 是一个商,可以是整数、小数或分数。

  化简比 根据比的基本性质,把比的前项和后项同时乘上或者同时除以相同的数(零除外)。 是一个比,它的前项和后项都是整数。

  4、 比例尺

  图上距离和实际距离的比,叫做这幅图的比例尺。即图上距离:实际距离=比例尺。通常把比例尺写成前项(或后项)是1的比。

  5、 正比例和反比例的区别与联系

  相同点 不同点

  特征 关系式

  正比例关系 两种相关联的量,一种量变化,另一种量也随着变化。 两种量中相对应的两个数比值一定。 yx = k(一定)

  反比例关系 两种量中相对应的两个数的积一定。 x×y=k(一定)

  第三章 应用题

  第一节 一般复合应用题

  知识要点

  1、复合应用题

  两步或两步以上的应用题,通常叫做复合应用题。复合应用题是由几道有联系的简单应用题组合而成的。不具备特定的结构特征和解题规律的复合应用题,叫做一般复合应用题。

  2、一般复合应用题的解法

  一般复合应用题无一定的解答规律,可以把它先分解成几个简单的一步应用题,分别求出间接问题,然后求出结果。在具体分析解答中,一般采用分析法,综合法,或分析综合法。对于比较复杂的问题,可以运用图示法、假设法、转化法等帮助分析。

  (1)分析法:就是从问题入手,逐步分析题里的已知条件。

  (2)综合法:就是从应用题的已知条件,逐步推向未知,直到求出解。

  (3)分析综合法:是将分析法|综合法结合起来交替使用的方法。当已知条件中有明显计算过程时就用综合法顺推,遇到困难时再转向原题所提的问题用分析法帮忙,逆推几步,顺推和逆推联系上了,问题就解决了。

  3、一般复合应用题的解题步骤

  解答一般复合应用题,按照以下步骤进行:

  (1)审清题意,并找出已知条件和所求问题;

  (2)分析题目里的数量关系,从而确定先算什么,再算什么……最后算什么;

  (3)列出算式,算出得数;

  (4)进行检验,写出答案。

  第二节 典型应用题

  知识要点

  1、典型应用题

  用两步或两步以上运算解答的并且有一定解答规律的应用题叫典型应用题。如求平均数应用题、相遇问题、归一应用题等。要特别注意认识各类应用题的特点,并掌握其解题规律。

  2、求平均数问题

  (1)求平均数问题的特点:把各“部分量”合并为“总量”,然后按“总份数”平均,求其中一份是多少。

  (2)求平均数问题的解题规律:解答这类问题的关键是先求出“总量”和“总份数”,然后用总量÷总份数=平均数。

  (3)有些复杂的求平均数问题,我们根据平均数就是移出大数多出部分给小数后得到相等数的实质,用“移多补少法”解答。

  3、归一问题

  (1)归一问题的特点:从已知条件中求出“单一量”,再以“单一量”为标准去计算所求的量。归一问题通常分为正归一和反归一两种。

  (2)归一问题的解题规律:在解题过程中,首先求出一个单位数量,然后以这个“单位量”为标准,根据题目的要求,用乘法算出若干个“单位量”是多少,这是正归一的解题规律。或用除法算出总量包含多少个“单位量”,这是反归一的解题规律。归一问题还可以用倍比问题的解题方法求解。

  4、相遇问题

  (1)特点:a.两个运动物体;b.运动方向相向;c.运动时间同时。

  (2)解题规律:速度和×相遇时间=路程 路程÷速度和=相遇时间

  路程÷相遇时间=速度和

  第三节 分数、百分数应用题

  知识要点

  1、分数乘法应用题

  已知一个数,求它的几分之几(百分之几)是多少,用乘法。

  即“一个数×几分之几(百分之几)”。

  用等式表示三量的关系:单位“1”的量×对应分率=对应数量

  2、分数除法应用题

  (1)已知一个数的几分之几(百分之几)是多少,求这个数,用除法。即“多少÷几分之几”。

  用等式表示三量的关系:对应数量÷对应分率=单位“1”的量

  (2)求一个数是另一个数的几分之几(百分之几),用除法。即“一个数÷另一个数”

  用等式表示三量的关系:对应数量÷单位“1”的量=对应分率

  3、工程问题的应用题

  把工作总量用“1”表示,工作效率用单位时间内做工作总量的“几分之一”表示。根据工作总量与工作效率,就能求出合作完成工作的时间。

  三量之间的关系式:工作效率×工作时间=工作总量

  工作总量÷工作时间=工作效率

  工作总量÷工作效率=工作时间

  第四节 列方程解应用题

  知识要点

  1、列方程解应用题

  列方程解应用题就是用字母代替应用题中的未知数,根据数量间的相等关系列方程,解方程。

  2、列方程解应用题的一般步骤

  (1)弄清题意,找出未知数并用x表示;

  (2)找出应用题中数量间的相等关系,列方程;

  (3)解方程;

  (4)检验或验算,写出答案。

  第五节 比和比例应用题

  知识要点

  比和比例应用题包括:比例尺、按比例分配和正反比例应用题。

  (1)在比例尺应用题中,图上距离、实际距离和比例尺三者之间的关系式:图上距离:时间距离=比例尺。三个相关的量中,知道任意两个量,就可根据关系式,求出另一个量。在计算中,要注意各种量的单位在算式中必须统一。

  (2)按比例分配的应用题:是把一个数量按照一定的比分配成几部分。按比例分配应用题是在比的意义、比与分数的关系的基础上来解决的。关键是要根据各部分之比,确定各部分量与总量之间的关系,即各部分占总量的几分之几。然后按照“求一个数(这里指分配的量)的几分之几是多少”的问题来解答。

  (3)正比例应用题中的各种相关联的数量有正比例关系,关系式是:yx = k(一定),反比例应用题中的各种相关联的数量有反比例关系,关系式是:x ? y= k(一定)。解答正、反比例应用题,基本步骤是:

  ①分析数量关系,依据相关联的量之间的数量关系式,判定它们成什么比例;

  ②根据关系式列出等量关系式;

  ③设未知数,根据等量关系式列方程;

  ④解方程;⑤检验并写出答案

  第四章 量的计算

  知识要点

  1、量、计量和计量单位的意义

  事物的多少、长短、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。

  2、常用计量单位及其进率

  (1)长度、面积、地积、体积、容积、重量单位及其进率:

  长度 1千米=1000米 1米=10分米=100厘米

  1分米=10厘米 1厘米=10毫米

  面积 1平方千米=1000000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  1平方厘米=100平方毫米 地积 1平方千米=100公顷

  1公顷=10000平方米

  体积 1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方厘米=1000立方毫米 容积 1升=1000毫升

  1立方分米=1升

  1立方厘米=1毫升

  重量 1吨=1000千克 1千克=1000克

  (2)常用时间单位及其关系:

  ①年月日之间的关系可用下表来说明:

  一年有12个月,平年全年有365天,闰年全年有366天。 按大小月分 1月、3月、5月、7月、8月、10月、12月是大月,每月有31天

  4月、6月、9月、11月是小月,每月30天

  2月既不是大月,也不是小月,平年2月28天,闰年2月29天

  按四个季度分 1月、2月、3月属第一季度

  4月、5月、6月属第二季度

  7月、8月、9月属第三季度

  10月、11月、12月属第四季度

  ②每个月分上、中、下三旬,上旬、中旬各有10天,下旬天数要根据月份确定,大月下旬11天,小月下旬10天 ,平年二月下旬8天,闰年二月下旬9天。

  ③1星期=7日 1日=24小时 1小时=60分 1分=60秒

  ④根据公历年份判断该年是平年还是闰年方法如下:

  整百、整千的年份能被400整除,其他年份能被4整除的都是闰年,反之是平年。

  3、同一类计量单位之间的化聚

  (1)化法:把高级单位的单名数和复名数改换成低级单位的单名数的方法,叫做化法。主要用相应的进率乘高级单位的量数。

  (2)聚法:把低级单位的单名数改换成高级单位的单名数或复名数的方法,叫做聚法。在聚的过程中,要用相应的进率去除相关的量数。

  (3)化法和聚法的关系:

  第五章 几何的初步知识

  第一节 平面图形的认识和计算

  知识要点

  1、线

  2、角

  (1)角:从一点引出两条射线所组成的图形叫做角。

  (2)角的分类:

  3、平面图形

  (1)三角形

  ①三角形的定义:由三条线段首尾互相连接围成的图形叫三角形。

  ②三角形的分类:

  (2)四边形

  ①四边形的定义:由四条线段依次连接围成的封闭图形叫四边形。

  ②四边形的分类:

  (3)特征及周长、面积计算公式:

  第六章 统计图表

  知识要点

  1、统计表

  (1)统计表:把收集到的资料进行数据整理后制成表格,用来分析情况,反映问题。这种表格叫做统计表,它一般分为单式统计表、复式统计表和百分数统计表三种类型。

  (2)制作统计表:制作统计表时,首先要搜集数据,整理数据,然后根据资料和制表要求确定表的格式和项目。一般统计表包括总标题(表的名称)、纵标目(每一纵栏的标题)、横标目(每一横栏的标题)、数据资料栏等,此外还应注明数量单位和制表日期,必要时,还要注明制表人。

  2、统计图

  (1)统计图:用点、线、面等来表示相关联的量之间数量关系的图形,叫做统计图。常见的统计图有条形统计图、折线统计图和扇形统计图三种。

  (2)条形统计图:

  ①条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。从条形统计图中很容易看出各种数量的多少。

  ②条形统计图的绘制方法:

  a.整理数据;b.画出纵轴和横轴,用一个长度单位表示一定的数量;c.根据数量的多少画成宽窄一样,长短不同的直条,并按一定顺序排列起来;d.写出统计图的名称和制图日期,并标出图例。

  (3)折线统计图

  ①折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。它不但可表示数量的多少,而且能够清楚地表示出数量增减变化的情况。

  ②折线统计图的绘制方法:

  a.整理数据;

  b.画出纵轴和横轴,用一个长度单位表示一定的数量;

  c.根据数量的多少描出各点,再把各点用线段顺次连接起来;

  d.写出统计图的名称和制图日期,并标出图例。

小学六年级数学毕业考必考的知识点是什么


小学数学总复习资料

【常用的数量关系】

1、每份数×份数=总数; 总数÷每份数=份数 ; 总数÷份数=每份数

2、1倍数×倍数=几倍数; 几倍数÷1倍数=倍数; 几倍数÷倍数=1倍数

3、速度×时间=路程 ; 路程÷速度=时间 ; 路程÷时间=速度

4、单价×数量=总价; 总价÷单价=数量 ; 总价÷数量=单价

5、工作效率×工作时间=工作总量; 工作总量÷工作效率=工作时间;

工作总量÷工作时间=工作效率;

6、加数+加数=和; 和-一个加数=另一个加数

7、被减数-减数=差; 被减数-差=减数; 差+减数=被减数

8、因数×因数=积; 积÷一个因数=另一个因数

9、被除数÷除数=商 ; 被除数÷商=除数; 商×除数=被除数

【小学数学图形计算公式】

1、正方形(C:周长, S:面积, a:边长)

周长=边长×4; C=4a

面积=边长×边长; S=a×a

2、正方体(V:体积, a:棱长)

表面积=棱长×棱长×6; S表=a×a×6

体积=棱长×棱长×棱长; V= a×a×a

3、长方形(C:周长, S:面积, a:边长, b:宽 )

周长=(长+宽)×2; C=2(a+b)

面积=长×宽 ; S=a×b

4、长方体(V:体积, S:面积, a:长, b:宽, h:高)

(1)表面积=(长×宽+长×高+宽×高)×2; S=2(ab+ah+bh)

(2)体积=长×宽×高; V=abh

5、三角形(S:面积, a:底, h:高)

面积=底×高÷2 ; S=ah÷2

三角形的高=面积×2÷底 三角形的底=面积×2÷高

6、平行四边形(S:面积, a:底, h:高)

面积=底×高; S=ah

7、梯形(S:面积, a:上底, b:下底, h:高)

面积=(上底+下底)×高÷2; S=(a+b)×h÷2

8、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径 )

(1)周长=π×直径π=2×π×半径; C=πd=2πr

(2)面积=π×半径×半径; S= πr2

9、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径 )

(1)侧面积=底面周长×高=Ch=πdh=2πrh

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

10、圆锥体(V:体积, S:底面积, h:高, r:底面半径 )

体积=底面积×高÷3

11、总数÷总份数=平均数

12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。

(和+差)÷2=大数; (和-差)÷2=小数

13、和倍问题的公式:已知两个数的和与两个数的倍数关系,求两个数各是多少的应用题,我们通常叫做和倍问题。

和÷(倍数-1)= 小数; 小数×倍数=大数(或者:和-小数=大数)

14、差倍问题的公式:差倍问题即已知两数之差和两数之间的倍数关系,求出两数。

差÷(倍数-1)= 小数; 小数×倍数=大数(或者:小数+差=大数)

15、相遇问题: 相遇路程=速度和×相遇时间;

相遇时间=相遇路程速度和;

速度和=相遇路程÷相遇时间

16、浓度问题

溶质的重量+溶剂的重量=溶液的重量; 溶液的重量×浓度=溶质的重量;

溶质的重量÷溶液的重量×100%=浓度; 溶质的重量÷浓度=溶液的重量

17、利润与折扣问题: 利润=售出价-成本; 利润率=利润÷成本×100%;

利息=本金×利率×时间; 涨跌金额=本金×涨跌百分比;

税后利息=本金×利率×时间×(1-利息税)

【常用单位换算】

(一)长度单位换算

1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米

(二)面积单位换算: 1平方千米=100公顷; 1公顷=10000平方米;

1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米

(三)体积(容积)单位换算:1立方米=1000立方分米; 1立方分米=1000立方厘米;

1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升

(四)重量单位换算: 1吨=1000千克; 1千克=1000克; 1千克=1公斤

(五)人民币单位换算: 1元=10角; 1角=10分; 1元=100分

(六)时间单位换算: 1世纪=100年; 1年=12月;

【大月(31天)有:1、3、5、7、8、10、12月】; 【小月(30天)有:4、6、9、11月】

【平年:2月有28天;全年有365天】; 【闰年:2月有29天;全年有366天】

1日=24小时; 1时=60分=3600秒; 1分=60秒;

文章版权及转载声明

作者:admin本文地址:http://my9888.com.cn/post/3058.html发布于 2020-11-28
文章转载或复制请以超链接形式并注明出处9888美文网

阅读
分享